Molecular Dynamics Simulation of Heterogeneous Nucleation of Liquid Droplet on Solid Surface
نویسندگان
چکیده
The heterogeneous nucleation of liquid droplet on a solid surface was simulated with the molecular dynamics method. Argon vapor was represented by 5760 Lennard-Jones molecules and the solid surface was represented by one layer of 1020 harmonic molecules with the constant temperature heat bath model using the phantom molecules. The potential parameter between solid molecule and vapor molecule was changed to reproduce various surface wetabilities. After the equilibrium condition at 160 K was obtained, temperature of the solid surface was suddenly set to 100 K or 80 K by the phantom molecule method. The observed nucleation rate, critical nucleus size and free energy needed for cluster formation were not much different from the prediction of the classical heterogeneous nucleation theory in case of smaller cooling rate. The difference became considerable with the increase in cooling rate and with increase in surface wettability because of the spatial temperature distribution.
منابع مشابه
Molecular Dynamics Simulation of Heterogeneous Nucleation of a Liquid Droplet on a Solid Surface
Heterogeneous nucleation of a liquid droplet on a solid surface was simulated with the molecular dynamics method. Argon vapor was represented by 5,760 Lennard-Jones molecules and the solid surface was represented by one layer of 4,464 harmonic molecules with the constant temperature heat bath model using the phantom molecules. The potential parameter between a solid molecule and a vapor molecul...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملMolecular Dynamics Simulation of Vapor Bubble Nucleation on a Solid Surface
Heterogeneous nucleation of vapor bubbles on a solid surface was simulated by the molecular dynamics method. Liquid argon between parallel solid surfaces was gradually expanded, until a stable vapor bubble was nucleated. Argon liquid was represented by Lennard-Jones molecules and each surface was represented by three layers of harmonic molecules with the constant temperature heat bath model usi...
متن کاملA Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface
A heterogeneous nucleation of a vapor bubble on a solid surface was simulated by the molecular dynamics method. Liquid argon between parallel solid surfaces was gradually expanded, until a vapor bubble was nucleated. Argon liquid was represented by 5488 Lennard-Jones molecules and each surface was represented by three layers of harmonic molecules with the constant temperature heat bath model. W...
متن کامل